

Report No.:18230EC20252301 Page 1 of 43

EMC Test Report

Client Name ZHEJIANG CHISAGE NEW ENERGY

TECHNOLOGY CO., LTD.

No. 501 Fuqiang Road, Panhuo Street,

Client Address : Yinzhou District, Ningbo City, Zhejiang


Province

Product Name 5kWh Rack Mounted Lithium-ion Battery

Module

Report Date: Nov. 02, 2022

Shenzhen Anbotek Compliance Laboratory Limited

Page 2 of 43

Contents

1. Gene	ral Information		boto			Ver	5
1.1.	Client Information	Anb	otek	Anbore			5
1.2	Description of Device (EUT)	Aupora		, do	yer A	70°	5
1.3	Auxiliary Equipment Used During	Test	Anb		,teΩtel ^k	Aupo,	5
1.4	Description of Test Mode	ا ان میں انداز	iek auk)o	-ek	roda	6
1.5.	Test Summary Test Equipment List		votek	nbote	Anv		6
1.6	Test Equipment List	oter An			Aupo,		7
1.7	Description of Test Facility	botek	Anbu		0000		11
1.8	EMS Performance Criteria	r alek	e aport	Vi.	AV.	Polek	12
2. Powe	r Line Conducted Emission Test	Vur.	, , , , , , , , , , , , , , , , , , ,	k Anbo		wotek.	13
2.1	. Test Standard and Limit	Anbo.		otekpi	pole.	Vur.	13
2.2	Test Standard and Limit	k Vupo _k	An.		Kilpotek	Aupo,	13
2.3	Test Procedure Test Results		ootek	upo	n. motek	124	14
2.4	Test Results		otelk	Anbore	Vi.		14
3. Asym	metric Mode Conducted Emission	at Telecom	Port	boten	Anbe		15
3.1.	Test Standard and Limit	nebotek.	Anbo		/n _A /s	0010	15
3.2	Test Setup	, wotek	Anbore	All.	eV	repoter	15
3.3	Test Procedure	·······················	V	No. Vu			16
3.4.	Test Results	Anu)/	100/0/k	Anbo.		16
4. Radia	ated Emission Test (Below 1 GHz)	itek Anb	,o, P,		unboten	Anb	17
4.1	Test Standard and Limit		aboten	Anbe		,k-	17
4.2	Test Setup	UD	Jootek	Anbor	b.,.	Jek.	17
4.3	Test Procedure	Aupo,	in tek	, oboti	Yu.		17
	Test Results						
5. Radia	ated Emission Test (Above 1GHz)	, botel	k Anbo	,	⁴ e ^k	anbote.	21
5.1.	Test Standard and Limit		rek	boter	Yun	۶ وړ	21
5.2	Test Setup	le. Aug		hotek	Anbo.		21
5.3	Test Procedure	notek A	upo,	b.,	Anbore	Þ.	21
5.4	lest Results						22
6. Harm	onic Current Test	Vun.	botek	Anbo.		wetek.	23
6.1	Test Standard	Anbo.	ñ	ek nab	o _{de} . b	,n- ,n-	23
6.2	. Test Setup	Anbore	An		abotek	Anbo	23
6.3	. Test Procedure	00, 40	tek An	, , , , , , , , , , , , , , , , , , ,	otek	Vupo	23
6.4	Test Results	V	ote/k	Anbore	YU.		23
7. Voltad	Test Standard Test Setup Test Procedure Test Results ge Fluctuations & Flicker Test	DOLO. VI	, sek	abotek	Anbo.	V	24
7.1	Test Standard	obotek	Aupo.	r. wotel	Anbo	V.	24
7.2	Test Setup	r.	Anbore.	Vur	re/r	ibotek	24
7.3	Test Standard Test Setup Test Procedure Test Results	Vu.,	obote	W Wup.	, P	botek	24
otek 7.4	Test Results	Anbo	-W	otek A	pore	Arra	24
	iek abo	V 1-0	Le D'Us		201	200	= pe

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:18230EC20252301 Page 3 of 43	
8. Electrostatic Discharge Immunity Test	25
8. Electrostatic Discharge Immunity Test	25
8.2. Test Setup	25
8.3. Test Procedure	25
8.4. Test Results	26
9. RF Field Strength Immunity Test	28
9. RF Field Strength Immunity Test	28
9.2. Test Setup	28
9.3. Test Procedure	29
9.4. Test Results	29
10. Electrical Fast Transient/Burst Immunity Test	31
10.1. Test Specification	31
10.2. Test Setup	31
10.2. Test Setup	32
10.4 Test Results	32
11. Surge Immunity Test	33
11.1. Test Specification	33
11.2. Test Setup	33
11.3. Test Procedure	33
11.4 Test Results	33
12. Injected Currents Susceptibility Test	34
12.1. Test Specification	34
12.2 Test Setup	34
12.3. Test Procedure	35
12.4. Test Results	35
13. Power Frequency Magnetic Field Immunity Test	36
13.1. Test Specification	36
13.2. Test Setup	36
13.3. Test Procedure	36
13.4. Test Results	36
14. Voltage Dips and Interruptions Immunity Test	37
14.1. Test Specification	37
14.2. Test Setup	37
14.3. Test Procedure	37
14.2. Test Setup	37
APPENDIX I TEST SETUP PHOTOGRAPH	38
APPENDIX II Photo documentation	10 to 10

Report No.:18230EC20252301 Page 4 of 43

TEST REPORT

Applicant : ZHEJIANG CHISAGE NEW ENERGY TECHNOLOGY CO., LTD.

Manufacturer : ZHEJIANG CHISAGE NEW ENERGY TECHNOLOGY CO., LTD.

Product Name : 5kWh Rack Mounted Lithium-ion Battery Module

Test Model No. : CE48100-R

Reference Model No. : N.A.

Trade Mark : CHISAGE

Rating(s) : Charging voltage: 58.4V Charging current: 50A

Test Standard(s) : EN IEC 61000-6-3: 2021;

EN IEC 61000-3-2: 2019+A1:2021; EN 61000-3-3: 2013+A1:2019+A2:2021;

EN IEC 61000-6-1: 2019;

(IEC 61000-4-2; IEC 61000-4-3; IEC 61000-4-4;

IEC 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-11)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN IEC 61000-6-1, EN IEC 61000-3-2, EN 61000-3-3, EN IEC 61000-6-3 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Oct. 21, 2022
Date of Test:	Oct. 21~28, 2022
	Kep Huang
Prepared By:	see Huang
	(Yee Huang)
	Cingkongjin
Approved & Authorized Signer:	Air Marker And
	(KingKong Jin)

Report No.:18230EC20252301 Page 5 of 43

1. General Information

1.1. Client Information

13/1	-623	VO. 1-0, DV. 1-0, VO.
Applicant	:	ZHEJIANG CHISAGE NEW ENERGY TECHNOLOGY CO., LTD.
Address	:	No. 501 Fuqiang Road, Panhuo Street, Yinzhou District, Ningbo City, Zhejiang Province
Manufacturer	:	ZHEJIANG CHISAGE NEW ENERGY TECHNOLOGY CO., LTD.
Address	:	No. 501 Fuqiang Road, Panhuo Street, Yinzhou District, Ningbo City, Zhejiang Province
Factory	:	ZHEJIANG CHISAGE NEW ENERGY TECHNOLOGY CO., LTD.
Address	:	No. 501 Fuqiang Road, Panhuo Street, Yinzhou District, Ningbo City, Zhejiang Province

1.2. Description of Device (EUT)

Product Name	:	5kWh Rack Mounted Lithium-ion Battery Module
Test Model No.	:	CE48100-R
Reference Model No.	:	N.A. Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	CHISAGE
Test Power Supply	:	DC 51.2V
Test Sample No.	:	1-1-1ek Anborek Anborek Anborek Anborek Anborek Anborek
Product	:	N/Anbote Anbotek Anbotek Anbotek Anbotek
Description		Anbotek Anbo sk sbotek Anbotek Anbotek Anbotek
Remark: (1) For a n	nore	e detailed features description, please refer to the manufacturer's

1.3. Auxiliary Equipment Used During Test

N/A	Air	Anboten	Anbo	abotek	Aupore	Air.

Code: AB-EMC-02-c
Hotline
400-003-0500

specifications or the User's Manual.

Page 6 of 43

1.4. Description of Test Mode

Pretest Mode	Description					
Mode 1	Discharging					

For Mode 1 Block Diagram of Test Setup

1.5. Test Summary

Test Items	Test Mode	Status
Power Line Conducted Emission Test	Ambotek /Ambotek	Anb Nek
Asymmetric Mode Conducted Emission at Telecom Port	Anbotes Anbo	iek Nootek
Radiated Emission Test (Below 1 GHz)	Mode 1	botek P Anbot
Radiated Emission Test (Above 1GHz)	potek Anjoren	AnboreN An
Harmonic Current Test	Anbotek / Anbotek	Anbotek
Voltage Fluctuations & Flicker Test	Anbotek / Anbo	notek N Anbotek
Electrostatic Discharge Immunity Test	Mode 1	Anbotek P Anbot
RF Field Strength Immunity Test	Mode 1	Anbore P. An
Electrical Fast Transient/Burst Immunity Test	Arbotek / Anbote	k Notek
Surge Immunity Test	k Anboret An	otek Nambore
Injected Currents Susceptibility Test	otek Anb Stek	anbore N Anb
Power frequency Magnetic Field Immunity Test	nbotek Anbotek	Anto N
Voltage Dips and Interruptions Immunity Test	Anbotek / Anbote	N Anbotek
P) Indicates "PASS". F) Indicates "Fail".	Anbotek Anb	Impotek Aupotek

Shenzhen Anbotek Compliance Laboratory Limited

N) Indicates "Not applicable".

Page 7 of 43

1.6. Test Equipment List

☐ Power Line Conducted Emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
An'	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Oct. 23, 2022	1 Year
nbore	Three Phase V-type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	Jul. 05, 2022	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 13, 2022	1 Year
4.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Oct. 22, 2022	1 Year
5.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

☐ Asymmetric Mode Conducted Emission at Telecom Port

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	ISN	Schwarzbeck	NTFM 8158	#172	Oct. 13, 2022	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 13, 2022	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Oct. 22, 2022	1 Year
4. _b	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A
5.	Three Phase V-type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	Jul. 05, 2022	1 Year

□ Radiated Emission Test (Below 1 GHz)

7.	101	7.00	V			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 13, 2022	1 Year
2.	Pre-amplifier	Schwarzbeck	BBV-9745	9745-075	Oct. 23, 2022	1 Year
3.	Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	01109	Oct. 16, 2022	3 Year
100 telk 4.	Software Name EZ-EMC	Ferrari Technology	EMEC-3A1	N/A	N/A	N/A

Page 8 of 43

☐ Radiated Emission Test (Above 1GHz)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	Oct. 23, 2022	1 Year
2.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Oct. 23, 2022	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Oct. 23, 2022	1 Year
100tek 4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A
5. Ant	EMI Preamplifier	SKET Electronic	LNPA-0118G- 45	SKET-PA-0 02	Oct. 13, 2022	1 Year
6.	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	Oct. 16, 2022	3 Year

☐ Harmonic Current and Flicker Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.mb	Programmable AC Power source	IVYTECH	APS-5005A	632734	Oct. 23, 2022	1 Year
2.	Harmonic and Flicker Analyzer	EMC-PARTNER	HMONICS 1000-1P	164	Oct. 23, 2022	1 Year
3.	Harmonics-1000	N/A	Ed.3.0+4.0	N.A	N/A	N/A

⊠ Electrostatic Discharge Immunity Test

Iten	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	ESD Simulators	emtest	ESD NX30.1	11936	Mar. 25, 2022	1 Year

Page 9 of 43

⊠RF Field Strength Immunity Test

	r icid oli crigiti illilli	unity 100t	v	Dille	401	200	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1 _{p.n} b	Signal Generator	Agilent	N5182A	MY4818065 6	Oct. 13, 2022	1 Year	
_e √2.	Amplifier	Micotoop	MPA-80-100 0-250	MPA190309 6	Oct. 23, 2022	1 Year	
3.	Amplifier	Micotoop	MPA-1000-6 000-100	MPA190312 2	Oct. 23, 2022	1 Year	
4.	Antenna Double Ridged		VULP9118E 00992		N/A	N/A	
5.			BBHA 9120D 02555		Oct. 16, 2022	3 Year	
6.	Power Sensor	Agilent	E9301A	MY4149890 6	Oct. 23, 2022	N/A 3 Year 1 Year	
Anbotel An 7 .	7. Power Sensor Agilent 8. Power Meter Agilent		E9301A	MY4149808 8	Oct. 23, 2022	1 Year	
8.			E4419B	GB4020290 9	Oct. 23, 2022	1 Year	
9.	Electric field Probe	Narda	EP 601	811ZX10351	Oct. 23, 2022	1 Year	
10.	RS Test software	EMtrace	EM 3	V1.1.7	N/A	N/A	

☐ Electrical Fast Transient/Burst Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. P.S	Surge Generator	TESEQ	NSG 3060	1480	Oct. 23, 2022	1 Year
2.	CDN	TESEQ	CDN 3061	1408	Oct. 23, 2022	1 Year
3.	EFT-Clamp	PRIMA	EFT-Clamp	John Kek	Oct. 13, 2022	1 Year

☐ Surge Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
PL	Combined Wave	Aupore, Au	rek or	potek Aup	ok 20	lek Aupole	
1.	Lightning Surge	3Ctest	CCS600	ES3771702	Jul. 05, 2022	1 Year	
yek.	Simulator	ak shotek	Anbore	Ann	anbotek Ar	lpo la	
2.**	Three Phase Power	3Ctest	SEPN69100	ES0801757	Jul. 05, 2022	1 Year	
Npc.	Coupling Network	inpole ociestino	k Toptek	L30001737	Jul. 03, 2022	T Icai	
3.	Telecom port surge generator	PMI	TW101	190411	May 13, 2022	1 Year	

Page 10 of 43

☐ Injected Currents Susceptibility Test

	. 3/257	. 200	M. and Chi	12//	3/607	- 637	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1. ^{Anl}	C/S Conducted Immunity Test System	FRANKONIA	CIT-10	126A1196/20 12	Oct. 23, 2022	1 Year	
2.	CDN And	FRANKONIA	CDN - M2+ M3	A2210178/20 12	Oct. 23, 2022	1 Year	
3.	6dB Attenuator	FRANKONIA	DAM 26W	1172202	Oct. 23, 2022	1 Year	
4.	CIT-10	FRANKONIA	Version1.1.7	N/A	N/A	N/A	
5.	EM-Clamp	FRANKONIA	EMCL-20	18101728-01 03	May 17, 2022	1 Year	

☐ Power frequency Magnetic Field Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Anbor Anb	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000-8 K	906002	Oct. 23, 2022	1 Year

☐ Voltage Dips and Interruptions Immunity Test

ľΡďη	tem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
· n'	potek	CYCLE SAG	PRIMA	DRP61011A	DD120/623/	Oct. 23. 2022	1 Year
ja.	100	Simulator	AND FRIIVIA	G.nbo	FK12040234	Oct. 23, 2022	I Teal

Report No.:18230EC20252301 Page 11 of 43

1.7. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518128

Report No.:18230EC20252301 Page 12 of 43

1.8. EMS Performance Criteria

Performance criterion A

The EUT shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer. when the EUT is used as intended. If the performance level is not specified by the manufacturer, this may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

The EUT shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer. when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. However, during the test degradation of performance is allowed but no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and and what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Ternporary loss of function is allowed during the test. provided the function is self-recoverable or can be restored by the operation of the controls.

If. as a result of the application of the tests defined in this standard, the EUT becomes dangerous or unsafe, it shall be deemed to have failed the test.

Report No.:18230EC20252301 Page 13 of 43

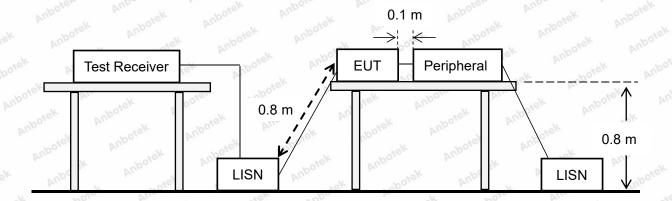
2. Power Line Conducted Emission Test

2.1. Test Standard and Limit

_	D.V.	134	~~~	1 1/2	1.01	D/1.	1/2/	- 00
Y.	Tes	t Standard:		EN IEC 61000-6-3	Anto			Ai.
		K NO.	Di.	10,	000	. ak	NO.	1977

Limits for conducted emission at the DC power ports

Fraguerov (MIII-)	Limits (dBμV)					
Frequency (MHz)	Quasi-peak Level	Average Level				
0.15 ~ 0.50	79.0	66.0 Mbode				
0.50 ~ 30.00	73.0 ADD 100 A	60.0				


Limits for conducted emission at the low voltage AC mains power ports

Fraguanay (MHz)	Limits ((dBμV)		
Frequency (MHz)	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *		
0.50 ~ 5.00	56.0	46.0		
5.00 ~ 30.00	60.0	orek Anbore 50.0 Anbor		

Remark:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

2.2. Test Setup

Report No.:18230EC20252301 Page 14 of 43

2.3. Test Procedure

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane, and the back of the EUT is 0.4 m away from the vertical ground reference plane, and at least 0.8 m from any other metal surface or ground plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plate, at least 0.8 m away from other metal objects.

Connect EUT to the power mains through an LISN. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the center into a bundle no longer than 0.4 m, so that its length is shortened to 1 m. All the peripherals are connecting to the other LISN.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

The identification of the frequency of highest disturbance with respect to the limit was found by investigating disturbances at a number of significant frequencies. The probable frequency of maximum disturbance had been found and that the associated cable and EUT configuration and mode of operation had been identified.

Set the test-receiver to quasi peak detect function and average detect function, and to measure the conducted emissions values.

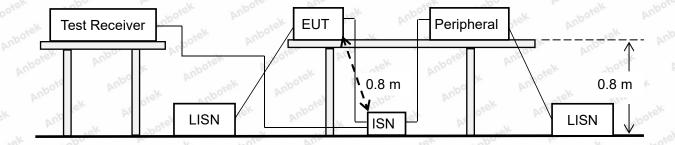
2.4. Test Results

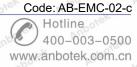
Report No.:18230EC20252301 Page 15 of 43

3. Asymmetric Mode Conducted Emission at Telecom Port

3.1. Test Standard and Limit

13/1	18Y	- A 12	, M.	1.01	D/A	167	- 47
4	Test Standard		EN IEC 61000-6-3	And	Anborek	Anbo.	Pr.


Limits for asymmetric mode conducted emissions


Fraguency (MLIT)	Limits (dBμV)						
Frequency (MHz)	Quasi-peak Level	Average Level					
0.15 ~ 0.50	84.0 ~ 74.0 *	74.0 ~ 64.0 *					
0.50 ~ 30.00	74.0	64.0					

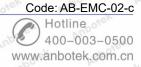
Remark:

The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Setup

Page 16 of 43

3.3. Test Procedure


The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane, and the back of the EUT is 0.4 m away from the vertical ground reference plane, and at least 0.8 m from any other metal surface or ground plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plane, at least 0.8 m away from other metal objects.

Connect EUT to the power mains through an LISN. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the center into a bundle no longer than 0.4 m, so that its length is shortened to 1 m. All the peripherals are connecting to the other LISN.

The EUT was connected to the peripheral equipment through the ISN and linked in normal condition.

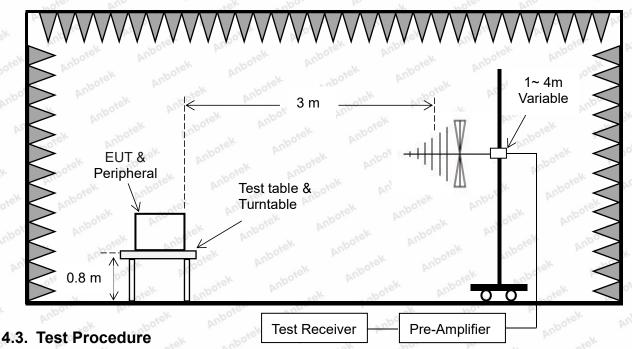
Set the test-receiver to quasi peak detect function and average detect function, and to measure the asymmetric mode conducted emission values.

3.4. Test Results

Report No.:18230EC20252301 Page 17 of 43

4. Radiated Emission Test (Below 1 GHz)

4.1. Test Standard and Limit


D11.	200	~0	V	1-01	D/1	200	~ ~ ~ ~ ~
Test	Standard		EN IEC 61000-6-3	Ann	Anbotek	Anbo. rek	br.

Limit for radiated emissions at frequencies up to 1 GHz

Frequency (MHz)	Distance (Meters)	Field Strengths Limit (dBμV/m)			
30 ~ 230	ootek Anbore 3 Ans botek	40			
230 ~ 1000	Anbotek Anbotek	Arboret 47 notek Art			

Remark: The lower limit shall apply at the transition frequencies.

4.2. Test Setup

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plane.

The EUT was set 3 m away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 m to find out the maximum emission level.

Shenzhen Anbotek Compliance Laboratory Limited

Page 18 of 43

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

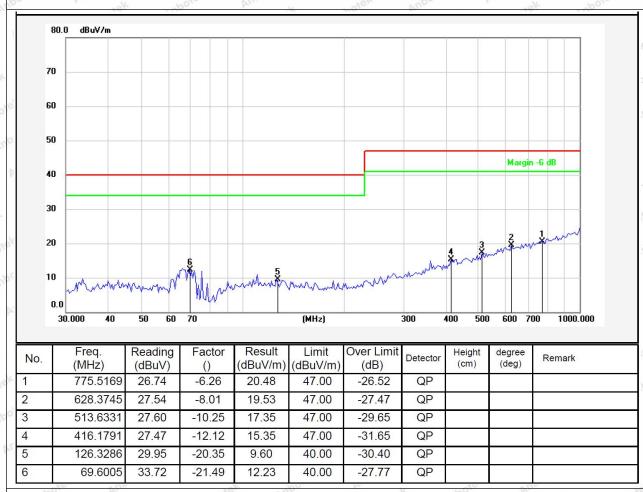
The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The bandwidth of the Receiver is set at 120 kHz.

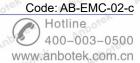
4.4. Test Results

PASS

The test curves are shown in the following pages.


Report No.:18230EC20252301 Page 19 of 43

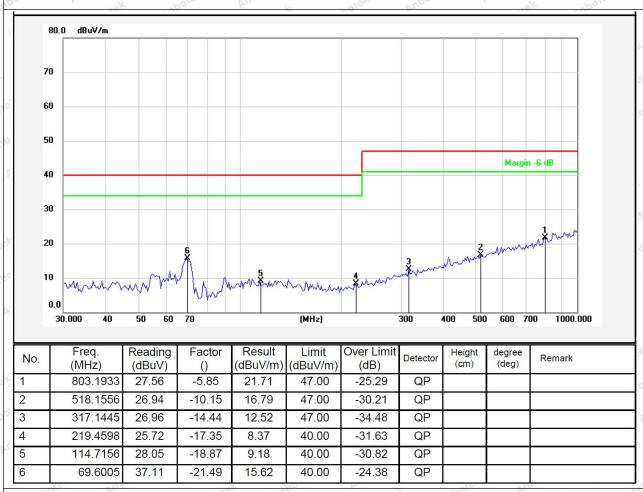
Test item: Radiation Test Polarization: Horizontal


Standard: (RE)EN IEC 61000-6-3 Power Source: DC 51.2V

Frequency Range: 30MHz ~ 1000MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 23.5($^{\circ}$ C)/48%RH

Distance: 3m

Note: Result= Reading + Factor Over Limit=Result-Limit


Report No.:18230EC20252301 Page 20 of 43

Test item: Radiation Test Polarization: Vertical

Standard: (RE)EN IEC 61000-6-3 Power Source: DC 51.2V

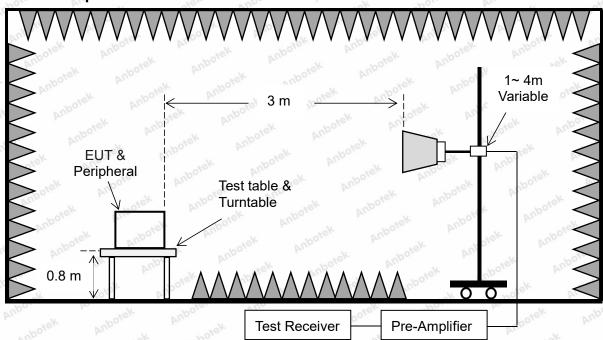
Frequency Range: 30MHz ~ 1000MHz Temp.($^{\circ}$)/Hum.($^{\circ}$ RH): 23.5($^{\circ}$)/48%RH

Distance: 3m

Note: Result= Reading + Factor Over Limit=Result-Limit

Report No.:18230EC20252301 Page 21 of 43

5. Radiated Emission Test (Above 1GHz)


5.1. Test Standard and Limit

_	13/1	5-22-Y	100	· · · · · · · · · · · · · · · · · · ·	1-01	12/7	14 PAY	
×	Test Sta	ndard		EN IEC 61000-6-3	And	Anbotek	Aupo	Pr.

Limit for radiated emissions at frequencies above 1 GHz

Frequency	Distance	Field Strengths	Field Strengths Limit (dBμV/m)						
(MHz)	(Meters)	Peak	Average						
1000 ~ 3000	Anbotek 3 Anbo	Anborek 70 Anbore	Anbotek Anbotek						
3000 ~ 6000	Anbore 3 And hot	74 Anb 74	54						
Remark: The lower limit	shall apply at the transition	r frequencies.	tek upotek An						

5.2. Test Setup

5.3. Test Procedure

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plane.

The EUT was set 3 m away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 m to find out the maximum emission level.

Shenzhen Anbotek Compliance Laboratory Limited

Page 22 of 43

The turntable can rotate 360 degree to determine the position of the maximum emission level.

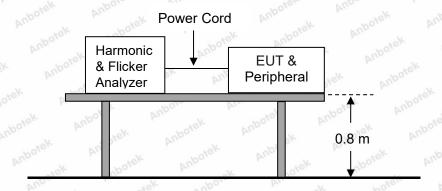
The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The test receiver is set to peak and average detects function.

The bandwidth of the test receiver is set at 1MHz.

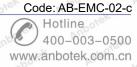
5.4. Test Results


Report No.:18230EC20252301 Page 23 of 43

6. Harmonic Current Test

6.1. Test Standard

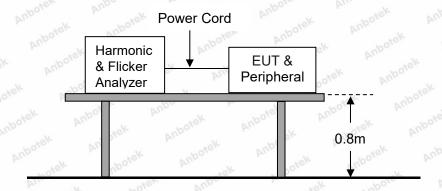
1501	10°/- 40°.	Do.	1-01c. DU
Test Standard:	EN IEC 61000-3-2	ofek Anboten	Anbo tek abot


6.2. Test Setup

6.3. Test Procedure

The table-top EUT is placed on the top of a wooden table 0.8 m above the ground (0.1 m for the floor-standing EUT) and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.

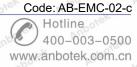
6.4. Test Results


Report No.:18230EC20252301 Page 24 of 43

7. Voltage Fluctuations & Flicker Test

7.1. Test Standard

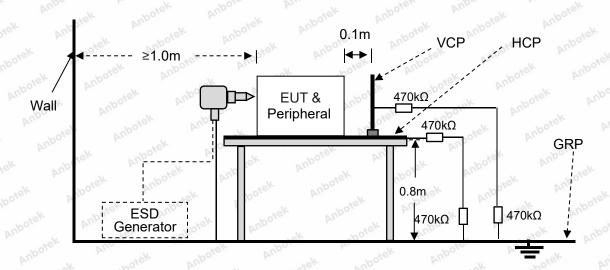
П	137	6651	104	. 46	- V	 Dill
¥.	Test Sta	ndard:	EN 61000-3-3			tok abot


7.2. Test Setup

7.3. Test Procedure

The table-top EUT is placed on the top of a wooden table 0.8 m above the ground (0.1 m for the floor-standing EUT) and operated to produce the most unfavorable sequence of voltage changes under normal conditions during the flicker measurement. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.4. Test Results


Report No.:18230EC20252301 Page 25 of 43

8. Electrostatic Discharge Immunity Test

8.1. Test Specification

N _e	Test Standard :	EN IEC 61000-6-1
,0	Basic standard :	IEC 61000-4-2: 2008
	Performance criteria:	bek Aupore Am Anbotek Anbotek Anbotek
Νī	Test Level :	± 8kV (Air Discharge) ± 4kV (Contact Discharge)

8.2. Test Setup

8.3. Test Procedure

- a. In the case of air discharge testing, the climatic conditions shall be within the following ranges:
- Ambient temperature: 15°C to 35°C;
- Relative humidity: 30% to 60%;
- Atmospheric pressure: 86 kPa (860 mbar) to 106 kPa (1060 mbar)
- b. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- c. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted: If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate. Coating declared as insulating by the manufacturer shall only be submitted to the air discharge. The contact discharge test shall not be applied to such surfaces.

Shenzhen Anbotek Compliance Laboratory Limited

Page 26 of 43

- d. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.
- e. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final test level should not exceed the product specification value in order to avoid damage to the equipment.
- f. The test shall be performed with both air discharge and contact discharge. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied. For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- g. Ensure that the applied charge on the EUT has been dis-charged before next ESD pulse.

8.4. Test Results

PASS

Please refer to the following page.

Page 27 of 43

Electrostatic Discharge Test Results

Test Result:	⊠ Pass □	Fail	Tempe	erature:	22.2	${\mathbb C}$	
Power Supply:	DC 51.2V	Andor	Humid	lity:	50%	Anbotek	Anbot
ok hotek Anb	otes Amb	tek an	potek	Vupo, Vr	horek	Anbore	PL
Anbotek Anbotek Le	ocation	hotek Anbotek	Anbotek Anbote	Kind A-Air Discharg C-Contact Discha		Resul	torek orek
Air discharge: ±2.0 kV, ±4	1.0 kV, ±8.0 kV		P C	ontact discharge:	±4.0 k	V.poter	
Positive Pole	otek Anbotek	points	otek	Anbotek A Anb	otek Lek	⊠A □B	□С
Negative Pole	abotek Anbo	points	nbotek	Anbotek A	upo,	⊠A □B	С
Slot	Anboten An	points	Anbore	Anborek A hotek	Di.	⊠A □B	□с
Metal	Anbotek 4	points	K Piup	botek C Anbotek		⊠A □B	□с
Light Moore	rek Anborek	points	otek P	Anbotek A Anbo	rek sek	⊠A □B	□С
Screw	botek Anbot	points	nbotek	Anborek C A	upo,	⊠A □B	C
HCP	Anboten And	points	Anbotel	Aupo, C	An'o	⊠A □B	□С
VCP of the front	Anbotek 4	points	Anbo	hotek C Anbotek		⊠A □B	□С
VCP of the rear	ek Anbotek 4	points	rek A	Anbotek C Anbo	iek ek	⊠A □B	□С
VCP of the left	potek Anbote	points	nbotek	Anbotek C An	-pots	⊠A □B	C
VCP of the right	Anboten Ant	points	Aupolek	Anborek	Anbo	⊠A □B	□С
Anbotek Anbotek	Anbo	Aupotek	Viloo	notek Anbotek	Δ'	upotek Ar	botek
Note: N/A	ak anbotek	Anbore	ak Ar	botek Anbot	ek.	Anbo. otek	w. aupo


Report No.:18230EC20252301 Page 28 of 43

9. RF Field Strength Immunity Test

9.1. Test Specification

Test Standard:	EN IEC 61000-6-1	tek Anbotek Anbot An
Basic standard:	IEC 61000-4-3: 2020	otek anbotek Anbote An
Performance criteria:	A Ambotek Ambotek Ar	A ek obotek Anbote
Frequency Range:	80MHz to 1000MHz	1.4GHz to 6GHz
Test level:	3 V/m	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulatio	n Anbott
Frequency Step:	1 % of preceding frequency value	ek Anbor An botek Anbo
Polarity of Antenna:	Horizontal and Vertical	potek Anbore Air.
Test Distance:	3 m	abotek Anbote Anbotek
Antenna Height:	1.5 m	Anborek Anbores Anborek
Dwell Time:	at least 0.5s	Anbotek Anbote Anb
Anbotek Anboten	k hotek Anbotek Anbote	ok anbotek Anboten Anbo
All abot		

9.2. Test Setup

Page 29 of 43

9.3. Test Procedure

The procedure defined in this part requires the generation of electromagnetic fields within which the test sample is placed and its operation observed. To generate fields that are useful for simulation of actual (field) conditions may require significant antenna drive power and the resultant high field strength levels. To comply with local regulations and to prevent biological hazards to the testing personnel, it is recommended that these tests be carried out in a shielded enclosure or semi-anechoic chamber.

- a. The antenna is placed 3 m from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the antenna.
- b. The test shall normally be performed with the generating antenna facing each side of the EUT. When equipment can be used in different orientations (i.e. vertical or horizontal) all sides shall be exposed to the field during the test. When technically justified, some EUTs can be tested by exposing fewer faces to the generating antenna. In other cases, as determined for example by the type and size of EUT or the frequencies of test, more than four azimuths may need to be exposed.
- c. The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.
- d. The step size of the frequency is set to 1%. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time should not exceed 5 s at each of the frequencies during the scan.

9.4. Test Results

PASS

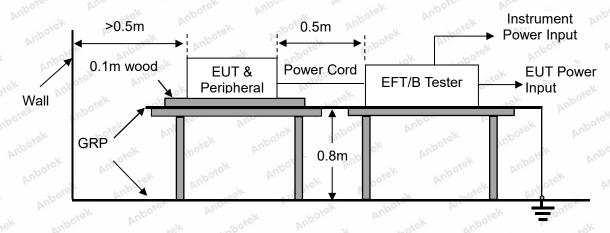
Please refer to the following page.

Page 30 of 43

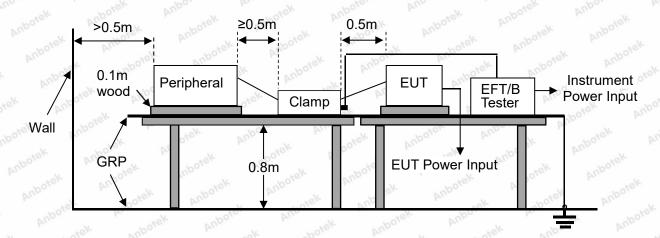
RF Field Strength Susceptibility Test Results

Test Result:	ipor otek	⊠ Pas	s 🗌 Fail	Temperature:	Anbotek	23.5℃	otek Ar	anbotek
Power Supply:	Anbo	DC 51.2	Notek Aupore	Humidity:		51%		
tek Anbor	bu.	otek	Anbores Anb	tek subotek	Ant	, o	An potek	PLU
Frequency Range		enna arity	R.F. Field Strength	Dwell Time	Azir	nuth	Resu	alt oo ^{tek}
Anbotek Ar		Anbo	ek Anbore	Annabotek	Anbore Fre	ont		
80 MHz ~ 1000	Anbe Anbere	K 75	3 V/m	1s	Re	ear		A Anbor
MHz	bi. II	otek	Anbores V/III And	potek Anbotek	P. Le	eft	vup tok	C An
potek Aupo	SK b	nbotek k	Anbote An	Anbotek Anbot	Ri	ght botek	Anbote	'k
Anbotek An		Anbore.	anbotak Anbotak	Anbotek An	Fre	ont Anbore		
Nek	Anbotek	Anbo.		Anbore.	Re	ear And		Anbo.
1.4Hz ~ 6GHz	Anbore	1	3 V/m		Ante	eft	nboten	S Anbo
potek Anbotek		hotek		otek Anbore	Rig	ght		
Note: N/A	otek V	Anbotek	k Anbotek	Anborek Anb	otek	Anborek	Anb	otek Otek

Report No.:18230EC20252301 Page 31 of 43


10. Electrical Fast Transient/Burst Immunity Test

10.1. Test Specification


D.17	25 AD 10 AD
Test Standard:	EN IEC 61000-6-1
Basic standard:	IEC 61000-4-4: 2012
Performance criteria:	B tek Anborek Anborek Anborek Anborek Anborek
Test Level:	□ 1 kV, AC mains power ports
	☐ 0.5 kV, DC network power ports
	□ 0.5 kV, Signal/Control ports

10.2. Test Setup

AC mains power ports and DC network power ports:

Analogue/digital data ports:

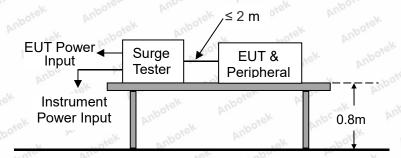
Page 32 of 43

10.3. Test Procedure

The table-top EUT is placed on a table that is 0.8 m height, a ground reference plane is placed on the table, and uses 0.1 m insulation between the EUT and ground reference plane. The floor-standing EUT is placed on a ground reference plane and insulated from it by an insulating support with a thickness of 0.1 m. This reference ground plane shall project beyond the EUT by at least 0.1 m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5 m.

All cables to the EUT shall be placed on the insulation support 0.1 m above the ground reference plane. Cables not subject to electrical fast transients shall be routed as far as possible from the cable under test to minimize the coupling between the cables.

10.4. Test Results


Report No.:18230EC20252301 Page 33 of 43

11. Surge Immunity Test

11.1. Test Specification

Test Standard:		EN IEC 61000-6-1
Basic standard:		IEC 61000-4-5: 2014+A1:2017
Test level	AC power port:	⊠ 1 kV, Line to Line, Criterion B
		⊠ 2 kV, Line to Ground, Criterion B
	DC network power port:	□ 0.5 kV, Line to Line, Criterion B
		☐ 1 kV, Line to Ground, Criterion B
	Signal/Control ports:	☐ 1 kV, lines to Ground, Criterion B
Number of surges		5 (for each combination of parameters)
Repetition rate		1 minute / time
Polarity:		Positive / Negative
Phase angle:		0°, 90°, 180°, 270° (Only AC mains power ports)

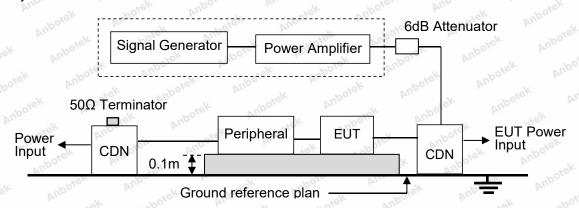
11.2. Test Setup

11.3. Test Procedure

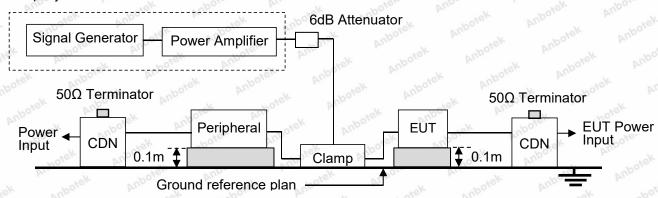
Table-top EUT is placed on a table of 0.8 m heights above a metal ground reference plane. Floor standing EUT is placed on a ground reference plane and insulated from it by an insulating support with a thickness of 0.1 m. The length of the power cord between the EUT and the coupling/decoupling network is not more than 2 m, and the length of the interconnection line between the EUT and the coupling/decoupling network is not more than 2 m. The tests were done at repetition rate 1 per minute.

11.4. Test Results

Report No.:18230EC20252301 Page 34 of 43


12. Injected Currents Susceptibility Test

12.1. Test Specification


Test Standard:	EN IEC 61000-6-1
Basic standard:	IEC 61000-4-6: 2013
Performance criteria:	Apotek Anbotek Anbotek Anbotek Anbotek Anbotek
Frequency range:	0.15MHz to 80MHz
Test level:	3V Anborek Anborek Anborek Anborek Anborek Anborek Anbore
Modulation:	AM 80%, 1kHz sine-wave
Frequency Step:	1% of fundamental

12.2. Test Setup

CDN injection:

Clamp injection:

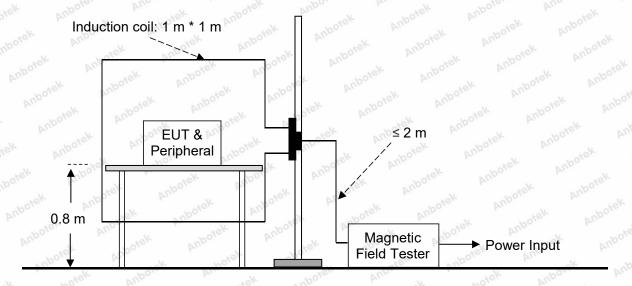
Shenzhen Anbotek Compliance Laboratory Limited

Report No.:18230EC20252301 Page 35 of 43

12.3. Test Procedure

- a. The EUT and peripheral are placed on an insulating support of 0.1 m height above a ground reference plan. The distance between EUT and CDN is 0.1 m to 0.3 m. All cables exiting the EUT are supported at a height of at least 30 mm above the ground reference plan.
- b. The frequency range is swept from 150 kHz to 80MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. The frequency range is swept incrementally. The step size was 1% of fundamental from 0.15MHz to 80MHz.
- c. The dwell time at each frequency isn't less than the time necessary for the EUT to be able to respond.

12.4. Test Results


Report No.:18230EC20252301 Page 36 of 43

13. Power Frequency Magnetic Field Immunity Test

13.1. Test Specification

Test Standard:	EN IEC 61000-6-1	Anbotek Anboro Anbor
Basic Standard	IEC 61000-4-8: 2009	tek Aupore Am
Performance criteria	Aorek Anborek Anborek A	Pose, Vuposek Vuposek
Test level	3A/m	Anbotek Anbotek Anbotek

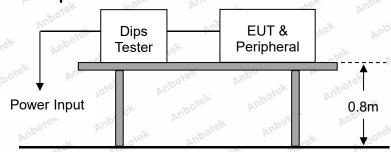
13.2. Test Setup

13.3. Test Procedure

Table-top EUT is placed on a table that is 0.8 m height. Floor standing EUT is placed on a ground reference plane and insulated from it by an insulating support with a thickness of 0.1 m.

The EUT is placed in the middle of an induction coil. The proximity method is used when the EUT does not fit into the standard inductive coil

13.4. Test Results


Report No.:18230EC20252301 Page 37 of 43

14. Voltage Dips and Interruptions Immunity Test

14.1. Test Specification

Test Standard:		EN IEC 61000-6-1
Basic standard:		IEC 61000-4-11: 2020
	Voltage Dips	⊠ 0%, 0.5 period, Criterion B
		⊠ 0%, 1 period, Criteria B
Toot level		⊠ 70%, 25 periods for 50Hz, Criteria C
rest level.		☐ 70%, 30 periods for 60Hz, Criteria C
	Voltage	⊠ 0%, 250 periods for 50Hz, Criteria C
	interruptions	□ 0%, 300 periods for 60Hz, Criteria C
		Basic standard: Voltage Dips Voltage

14.2. Test Setup

14.3. Test Procedure

- a. Where the equipment has a rated voltage the following shall apply:
- If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range, a single voltage within that range may be specified as a basis for test level specification.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.
- b. Test Conditions
- Select operated voltage and frequency of EUT Test of interval: 10 sec.
- Level and duration: Sequence of 3 dips/interrupts.
- Voltage rise (and fall) time: 1.5 μs.
- c. Changes to occur at 0 degree crossover point of the voltage waveform.

14.4. Test Results

Report No.:18230EC20252301 Page 38 of 43

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiated Emission Test (Below 1 GHz)

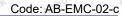


Photo of Electrostatic Discharge Immunity Test

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Report No.:18230EC20252301 Page 39 of 43

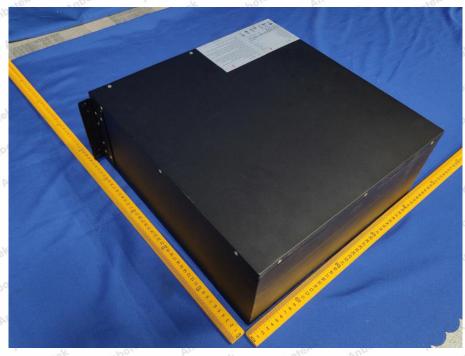
Photo of RF Field Strength Immunity Test

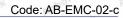
Page 40 of 43

APPENDIX II -- Photo documentation

Shenzhen Anbotek Compliance Laboratory Limited

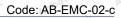
Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com




Page 41 of 43

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



Page 42 of 43

Report No.:18230EC20252301 Page 43 of 43

CE Label

- The CE conformity marking must consist of the initials 'CE' taking the following form:
 If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- 2. The CE marking must have a height of at least 5 mm except where this is not possible on account of the nature of the apparatus.
- 3. The CE marking must be affixed to the product or to its data plate. Additionally it must be affixed to the packaging, if any, and to the accompanying documents.
- 4. The CE marking must be affixed visibly, legibly and indelibly.

 It must have the same height as the initials 'CE'.

ick Althotok	End o	of Re	port	potek topoze
--------------	-------	-------	------	--------------

